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Expert tutorial

How to do a meta-analysis

Andy P. Field1* and Raphael Gillett2*
1School of Psychology, University of Sussex, UK
2School of Psychology, University of Leicester, UK

Meta-analysis is a statistical tool for estimating the mean and variance of underlying
population effects from a collection of empirical studies addressing ostensibly the same
research question. Meta-analysis has become an increasing popular and valuable tool
in psychological research, and major review articles typically employ these methods.
This article describes the process of conducting meta-analysis: selecting articles,
developing inclusion criteria, calculating effect sizes, conducting the actual analysis
(including information on how to do the analysis on popular computer packages such as
IBM SPSS and R) and estimating the effects of publication bias. Guidance is also given on
how to write up a meta-analysis.

What is meta-analysis and how do I do it?

Psychologists are typically interested in finding general answers to questions across

this diverse discipline. Some examples are whether cognitive behaviour therapy

(CBT) is efficacious for treating anxiety in children and adolescents (Cartwright-

Hatton, Roberts, Chitsabesan, Fothergill, & Harrington, 2004), whether language

affects theory of mind performance (Milligan, Astington, & Dack, 2007), whether

eyewitnesses have biased memories of events (Douglass & Steblay, 2006), whether

temperament differs across gender (Else-Quest, Hyde, Goldsmith, & Van Hulle, 2006),

the neuropsychological effects of sports-related concussion (Belanger & Vanderploeg,
2005), and how pregnant women can be helped to quit smoking (Kelley, Bond, &

Abraham, 2001). These examples illustrate the diversity of questions posed by

psychologists to understand human behaviour. Although answers to these questions

can be obtained in single pieces of research, when these studies are based on small

samples the resulting estimates of effects will be more biased than in large-sample

studies. Also, replication is an important means to deal with the problems created by
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measurement error in research (Fisher, 1935). For these reasons, different researchers

often address the same or similar research questions, making it possible to answer

questions through assimilating data from a variety of sources using meta-analysis.

A meta-analysis can tell us several things:

(1) The mean and variance of underlying population effects. For example,
the effects in the population of doing CBT on anxious children compared

to waiting-list controls. You can also compute confidence intervals for the

population effects.

(2) Variability in effects across studies. Meta-analysis can also be used to estimate

the variability between effect sizes across studies (the homogeneity of effect

sizes). Some meta-analysts report these statistics as a justification for assuming a

particular model for their analysis or to see whether there is variability in effect

sizes that moderator variables could explain (see Step 4). However, there is
accumulating evidence that effect sizes should be heterogeneous across studies

in the vast majority of cases (see, for example, National Research Council,

1992), and significance tests of this variability have low power. Therefore,

variability statistics should be reported, regardless of whether moderator

variables have been measured, because they tell us something important about

the distribution of effect sizes in the meta-analysis, but not as a justification for

choosing a particular method.

(3) Moderator variables. If there is variability in effect sizes, and in most cases
there is (Field, 2005b), this variability can be explored in terms of moderator

variables (Field, 2003b; Overton, 1998). For example, we might find that

compared to a waiting-list control, CBT including group therapy produces a

larger effect size for improvement in adolescents with eating disorders than CBT

without a group component.

This article is intended as an extended tutorial in which we overview the key stages

necessary when conducting a meta-analysis. The article describes how to do
meta-analysis in a step-by-step way using some examples from the psychological

literature. In doing so, we look not only at the theory of meta-analysis, but also at how

to use computer programs to conduct one: we focus on IBM SPSS, because many

psychologists use it, and R (because it is free and does things that SPSS cannot). We have

broken the process of meta-analysis into six steps: (1) do a literature search; (2) decide

on some inclusion criteria and apply them; (3) calculate effect sizes for each study to be

included; (4) do the basic meta-analysis; (5) consider doing some more advanced

analysis such as publication bias analysis and exploring moderator variables; and (6)
write up the results.

The example data sets

In this tutorial, we use two real data sets from the psychological literature. Cartwright-

Hatton et al. (2004) conducted a systematic review of the efficacy of CBT for childhood

and adolescent anxiety. This study is representative of clinical research in that relatively

few studies had addressed this question and sample sizes within each study were

relatively small. These data are used as our main example and the most benefit can be

gained from reading their paper in conjunction with this one. When discussing
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moderator analysis, we use a larger data set from Tenenbaum and Leaper (2002),

who conducted a meta-analysis on whether parents’ gender schemas related to their

children’s gender-related cognitions. These data files are available on the website that

accompanies this article (Field & Gillett, 2009).

Step 1: Do a literature search

The first step in meta-analysis is to search the literature for studies that have addressed

the same research question, using electronic databases such as the ISI Web of

Knowledge, PubMed and PsycINFO. This can be done to find articles, but also to identify
authors in the field (who might have unpublished data – see below); in the later case, it

can be helpful not only to backward-search for articles but also to forward-search by

finding authors who cite papers in the field. It is often useful to hand-search relevant

journals that are not part of these electronic databases and to use the reference sections

of the articles that you have found to check for articles that you have missed. One

potential bias in a meta-analysis arises from the fact that significant findings are more

likely to be published than non-significant findings because researchers do not submit

them (Dickersin, Min, & Meinert, 1992) and reviewers tend to reject manuscripts
containing them (Hedges, 1984). This is known as publication bias or the ‘file-drawer’

problem (Rosenthal, 1979). This bias is not trivial: significant findings are estimated to

be eight times more likely to be submitted than non-significant ones (Greenwald, 1975),

studies with positive findings are around seven times more likely to be published than

studies with results supporting the null hypothesis (Coursol & Wagner, 1986), and 97%

of articles in psychology journals report significant results (Sterling, 1959). The effect

of this bias is that meta-analytic reviews will overestimate population effects if they

have not included unpublished studies, because effect sizes in unpublished studies of
comparable methodological quality will be smaller (McLeod & Weisz, 2004) and can be

half the size of comparable published research (Shadish, 1992). To minimize the bias of

the file-drawer problem, the search can be extended from papers to relevant conference

proceedings, and by contacting people whom you consider to be experts in the field to

see if they have any unpublished data or know of any data relevant to your research

question that is not in the public domain. This can be done by direct e-mail to authors in

the field, but also by posting a message to a topic specific newsgroup or using LISTSERV.

Turning to our example, Cartwright-Hatton et al. (2004) gathered articles by
searching eight databases: Cochrane Controlled Trials register, Current Controlled Trials,

Medline, Embase/PsycINFO, Cinahl, NHS Economic Evaluation Database, National

Technical Information Service, and ISI Web of Science. They also searched the reference

lists of these articles, and hand-searched 13 journals known to publish clinical trials

on anxiety or anxiety research generally. Finally, the authors contacted people in

the field and requested information about any other trials not unearthed by their search.

This search strategy highlights the use of varied resources to ensure all potentially

relevant studies are included and to reduce bias due to the file-drawer problem.

Step 2: Decide on inclusion criteria

The inclusion of badly conducted research can also bias a meta-analysis. Although meta-

analysis might seem to solve the problem of variance in study quality because these

differences will ‘come out in the wash’, even one red sock (bad study) amongst the
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white clothes (good studies) can ruin the laundry. Meta-analysis can end up being an

exercise in adding apples to oranges unless inclusion criteria are applied to ensure the

quality and similarity of the included studies.

Inclusion criteria depend on the research question being addressed and any specific

methodological issues in the field; for example, in a meta-analysis of a therapeutic

intervention such as CBT, you might decide on a working definition of what constitutes
CBT, and perhaps exclude studies that do not have proper control groups and so on.

You should not exclude studies because of some idiosyncratic whim: it is important that

you formulate a precise set of criteria that is applied throughout; otherwise you will

introduce subjective bias into the analysis. It is also vital to be transparent about the

criteria in your write-up, and even consider reporting the number of studies that were

included/excluded at each hurdle in the process.

It is also possible to classify studies into groups, for example methodologically strong

or weak, or the use of waiting-list controls or other intervention controls, and then see if
this variable moderates the effect size; by doing so you can answer questions such as: do

methodologically strong studies (by your criteria) differ in effect size from the weaker

studies? Or, does the type of control group affect the strength of the effect of CBT?

The Cartwright-Hatton et al. (2004) review lists a variety of inclusion criteria that will

not be repeated here; reading their paper though will highlight the central point that

they devised criteria sensible to their research question: they were interested in child

anxiety, so variables such as age of patients (were they children?), diagnostic status

(were they anxious?), and outcome measures (did they meet the required standard?)
were used as inclusion criteria.

Step 3: Calculate the effect sizes

What are effect sizes and how do I calculate them?
Once you have collected your articles, you need to find the effect sizes within them,
or calculate them for yourself. An effect size is usually a standardized measure of

the magnitude of observed effect (see, for example, Clark-Carter, 2003; Field, 2005c).

As such, effect sizes across different studies that have measured different variables, or

have used different scales of measurement, can be directly compared: an effect size

based on the Beck Anxiety Inventory could be compared to an effect size based on

heart rate. Many measures of effect size have been proposed (see Rosenthal, 1991, for

a good overview) and the most common are Pearson’s correlation coefficient, r,

Cohen’s d, and the odds ratio (OR). However, there may be reasons to prefer
unstandardized effect size measures (Baguley, 2009), and meta-analytic methods exist

for analysing these that will not be discussed in this paper (but see Bond, Wiitala, &

Richard, 2003).

Pearson’s correlation coefficient, r, is a standardized form of the covariance between

two variables and is well known and understood by most psychologists as a measure of

the strength of relationship between two continuous variables; however, it is also a very

versatile measure of the strength of an experimental effect. If you had a sports-related

concussion group (coded numerically as 1) and a non-concussed control (coded
numerically as 0), and you conducted a Pearson correlation between this variable and

their performance on some cognitive task, the resulting correlation will have the same

p value as a t test on the same data. In fact, there are direct relationships between r and

statistics that quantify group differences (e.g., t and F ), associations between categorical
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variables (x2), and the p value of any test statistic. The conversions between r and these

various measures are discussed in many sources (e.g., Field, 2005a, 2005c; Rosenthal,

1991) and will not be repeated here.

Cohen (1988, 1992) made some widely adopted suggestions about what constitutes

a large or small effect: r ¼ :10 (small effect, explaining 1% of the total variance); r ¼ :30

(medium effect, accounting for 9% of the total variance); r ¼ :50 (large effect,
accounting for 25% of the variance). Although these guidelines can be a useful rule of

thumb to assess the importance of an effect (regardless of the significance of the test

statistic), it is worth remembering that these ‘canned’ effect sizes are not always

comparable when converted to different metrics, and that there is no substitute for

evaluating an effect size within the context of the research domain in which it is

being used (Baguley, 2009; Lenth, 2001).

Cohen’s d is based on the standardized difference between two means. You

subtract the mean of one group from the mean of the other and then standardize this
by dividing by s, which is the sum of squared errors (i.e., take the difference between

each score and the mean, square it, and then add all of these squared values up)

divided by the total number of scores:

d ¼ M1 2M2

s
:

s either can be based on a single group (usually the control group) or can be a

pooled estimate based on both groups by using the sample size, n, and variances, s,

from each:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 2 1Þs1 þ ðn2 2 1Þs2

n1 þ n2 2 2

r
:

Whether you standardize using one group or both depends on what you are trying to

quantify. For example, in a clinical drug trial, the drug dosage will affect not just the

mean of any outcome variables, but also the variance; therefore, you would not want

to use this inflated variance when computing d and would instead use the control

group only (so that d reflects the mean change relative to the control group).

If some of the primary studies have employed factorial designs, it is possible to

obtain estimators of effect size for these designs that are metrically comparable with

the d estimator for the two-group design (Gillett, 2003). As with r, Cohen (1988, 1992)
has suggested benchmarks of d ¼ :30, .50 and .80 as representing small, medium and

large effects, respectively.

The OR is the ratio of the odds (the probability of the event occurring divided

by the probability of the event not occurring) of an event occurring in one

group compared to another (see Fleiss, 1973). For example, if the odds of being

symptom-free after treatment are 10, and the odds of being symptom-free after being on

the waiting list are 2 then the OR is 10=2 ¼ 5. This means that the odds of being

symptom-free are five times greater after treatment, compared to being on the waiting
list. The OR can vary from 0 to infinity, and a value of 1 indicates that the odds of

a particular outcome are equal in both groups. If dichotomized data (i.e., a 2 £ 2

contingency table) need to be incorporated into an analysis based mainly on d

or r, then a d-based measure called dCox exists (see Sánchez-Meca, Marı́n-Martı́nez, &

Chacón-Moscoso, 2003, for a review).
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There is much to recommend r as an effect size measure (e.g., Rosenthal & DiMatteo,

2001). It is certainly convenient because it is well understood by most psychologists,

and unlike d and the OR it is constrained to lie between 0 (no effect) and ^1 (a perfect

effect). It does not matter what effect you are looking for, what variables have been

measured, or how those variables have been measured: a correlation coefficient of

0 means there is no effect, and a value of ^1 means that there is a perfect association.
(Note that because r is not measured on a linear scale, an effect such as r ¼ :4 is not

twice as big as one with r ¼ :2.) However, there are situations in which d may be

favoured; for example, when group sizes are very discrepant (McGrath & Meyer, 2006)

r might be quite biased because, unlike d, it does not account for these ‘base rate’

differences in group n. In such circumstances, if r is used it should be adjusted to the

same underlying base rate, which could be the base rate suggested in the literature,

the average base rate across studies in the meta-analysis, or a 50/50 base rate (which

maximizes the correlation).
Whichever effect size metric you chose to use, your next step will be to go through

the articles that you have chosen to include and calculate effect sizes using your

chosen metric for comparable effects within each study. If you were using r, this

would mean obtaining a value for r for each effect that you wanted to compare for

every paper you want to include in the meta-analysis. A given paper may contain

several rs depending on the sorts of questions you are trying to address with your

meta-analysis. For example, cognitive impairment in post-traumatic stress disorder

could be measured in a variety of ways in individual studies and so a meta-analysis
might use several effect sizes from the same study (Brewin, Kleiner, Vasterling, & Field,

2007). Solutions include calculating the average effect size across all measures of the

same outcome within a study (Rosenthal, 1991), comparing the meta-analytic results

when allowing multiple effect sizes from different measures of the same outcome

within a study, or computing an average effect size so that every study contributes

only one effect to the analysis (as in Brewin et al., 2007).

Articles might not report effect sizes, or might report them in different metrics.

If no effect sizes are reported then you can often use the reported data to calculate
one. For most effect size measures, you could do this using test statistics (as mentioned

above, r can be obtained from t, z, x2, and F ), or probability values for effects

(by converting first to z). If you use d as your effect size then you can use means and

standard deviations reported in the paper. Finally, if you are calculating ORs then

frequency data from the paper could be used. Sometimes papers do not include

sufficient data to calculate an effect size, in which case contact the authors for the raw

data, or relevant statistics from which an effect size can be computed. (Such attempts

are often unsuccessful and we urge authors to be sympathetic to e-mails from meta-
analysts trying to find effect sizes.) If a paper reports an effect size in a different metric

than the one that you have chosen to use then you can usually convert from one

metric to another to at least get an approximate effect size.1 A full description of the

various conversions is beyond the scope of this article, but many of the relevant

equations can be found in Rosenthal (1991). There are also many Excel spreadsheets

1 These conversions are often approximate and can have statistical implications. However, r can be converted
to d approximately using the equation: r ¼ d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2 þ 1=pq

p
, in which p is the proportion of participants in

the first group and q is the proportion of participants in the second group. To convert the opposite way
(again this conversion is approximate), use d ¼ r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqð1 2 r 2Þ

p
. Similarly, r can be obtained from an OR:

r ¼ ðOR0:5 2 1Þ=ðOR0:5 þ 1Þ.
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available on-line that compute effect sizes and convert between them; some examples

are DeCoster (1998) and Wilson (2004).

Calculating effect sizes for Cartwright-Hatton et al. (2004)
When reporting a meta-analysis it is a good idea to tabulate the effect sizes with other

helpful information (such as the sample size on which the effect size is based, N )

and also to present a stem-and-leaf plot of the effect sizes. For the Cartwright-Hatton

et al. data, we used r as the effect size measure but we will highlight differences for

situations in which d is used when we talk about the meta-analysis itself. Table 1 shows

a stem-and-leaf plot of the resulting effect sizes and this should be included in the
write-up. This stem-and-leaf plot tells us the exact effect sizes to two decimal places,

with the stem reflecting the first decimal place and the leaf showing the second;

for example, we know the smallest effect size was r ¼ :18, the largest was r ¼ :85,

and there were effect sizes of .71 and .72. Table 2 shows the studies included in

Cartwright-Hatton et al. (2004), with their corresponding effect sizes (expressed as r)

and the sample sizes on which these rs are based.

Table 1. Stem-and-leaf

plot of all effect sizes (rs)

Stem Leaf

.0

.1 8

.2

.3

.4

.5 0, 5, 8

.6 0, 2, 5

.7 1, 2

.8 5

.9

Table 2. Calculating the Hunter–Schmidt estimate

Study N r N £ r

Barrett (1998) 50 .55 27.30

Barrett et al. (1996) 76 .50 38.12

Dadds et al. (1997) 93 .18 16.49

Flannery-Schroeder and Kendall (2000) 43 .85 36.45

Hayward et al. (2000) 33 .62 20.43

Kendall (1994) 45 .71 31.85

Kendall et al. (1997) 70 .58 40.90

Shortt et al. (2001) 65 .65 42.03

Silverman et al. (1999) 41 .60 24.69

Spence et al. (2000) 47 .72 33.80

Total 563 312.06
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Step 4: Do the basic meta-analysis

Having collected the relevant studies and calculated effect sizes from each study, you

must do the meta-analysis. This section looks first at some important conceptual issues
before exploring how to actually do the meta-analysis.

Initial considerations
The main function of meta-analysis is to estimate effects in the population by combining

the effect sizes from a variety of articles. Specifically, the estimate is a weighted mean

of the effect sizes. The ‘weight’ that is used is usually a value reflecting the sampling

accuracy of the effect size, which is typically a function of sample size.2 This makes

statistical sense because if an effect size has good sampling accuracy (i.e., it is likely to be
an accurate reflection of reality) then it is weighted highly, whereas effect sizes that are

imprecise are given less weight in the calculations. It is usually helpful to also construct

a confidence interval around the estimate of the population effect. Data analysis is

rarely straightforward, and meta-analysis is no exception because there are different

methods for estimating the population effects and these methods have their own pros

and cons. There are lots of issues to bear in mind and many authors have written

extensively about them (Field, 2001, 2003a, 2003b, 2005b, 2005c; Hall & Brannick,

2002; Hunter & Schmidt, 2004; Rosenthal & DiMatteo, 2001; Schulze, 2004). In terms
of doing a meta-analysis, the main issues (as we see them) are: (1) which method to

use and (2) how to conceptualize your data. Actually, these two issues are linked.

Which method should I chose?
In essence, there are two ways to conceptualize meta-analysis: fixed- and random-effects

models (Hedges, 1992; Hedges & Vevea, 1998; Hunter & Schmidt, 2000).3 The fixed-effect
model assumes that studies in the meta-analysis are sampled from a population in

which the average effect size is fixed or can be predicted from a few predictors (Hunter

& Schmidt, 2000). Consequently, sample effect sizes should be homogeneous because

they come from the same population with a fixed average effect. The alternative

assumption is that the average effect size in the population varies randomly from study

to study: studies in a meta-analysis come from populations that have different average

effect sizes, so population effect sizes can be thought of as being sampled from a

‘superpopulation’ (Hedges, 1992). In this case, the effect sizes should be heterogeneous
because they come from populations with varying average effect sizes.

The above distinction is tied up with the method of meta-analysis that you chose

because statistically speaking the main difference between fixed- and random-effects

models is in the sources of error. In fixed-effects models, there is error because of

sampling studies from a population of studies. This error exists in random-effects

models but there is additional error created by sampling the populations from a

superpopulation. As such, calculating the error of the mean effect size in random-effects

2 If there is a study with a hugely discrepant sample size (i.e., very large compared to other studies) you should
consider conducting the analysis with and without this study to assess the extent to which this study will bias
the results.
3 A mixed-effects model exists too in which population effect sizes differ but their variability is explained by a
moderator variable that is treated as ‘fixed’ (see Overton, 1998) and also includes additional random
heterogeneity.
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models involves estimating two error terms, whereas in fixed-effects models there is

only one. This, as we will see, has implications for computing the mean effect size.

The two most widely used methods of meta-analysis are those by Hunter and Schmidt

(2004) which is a random-effects method, and by Hedges and colleagues (e.g., Hedges,

1992; Hedges & Olkin, 1985; Hedges & Vevea, 1998) who provide both fixed- and

random-effects methods. However, multi-level models can also be used in the context
of meta-analysis (see Hox, 2002, chap. 8).

Before doing the actual meta-analysis, you need to decide whether to conceptualize

your model as fixed or random effects. This decision depends both on the assumptions

that can realistically be made about the populations from which your studies are

sampled, and the types of inferences that you wish to make from the meta-analysis. On

the former point, many writers have argued that real-world data in the social sciences

are likely to have variable population parameters (Field, 2003b; Hunter & Schmidt,

2000, 2004; National Research Council, 1992; Osburn & Callender, 1992). There are
data to support these claims: Field (2005b) calculated the standard deviations of effect

sizes for all meta-analytic studies (using r) published in Psychological Bulletin in

1997–2002 and found that they ranged from 0 to 0.3, and were most frequently in the

region of 0.10–0.16; Barrick and Mount (1991) similarly found that the standard

deviation of effect sizes (rs) in published data sets was around 0.16. These data suggest

that a random-effects approach should be the norm in social science data.

The decision to use fixed- or random-effects models also depends upon the type of

inferences that you wish to make (Hedges & Vevea, 1998): fixed-effect models are
appropriate for inferences that extend only to the studies included in the meta-analysis

(conditional inferences), whereas random-effects models allow inferences that

generalize beyond the studies included in the meta-analysis (unconditional inferences).

Psychologists will typically wish to generalize their findings beyond the studies included

in the meta-analysis and so a random-effects model is appropriate.

The decision about whether to apply fixed- or random-effects methods is not trivial.

Despite considerable evidence that variable effect sizes are the norm in psychological

data, fixed-effects methods are routinely used: a review of meta-analytic studies in
Psychological Bulletin found 21 studies using fixed-effects methods (in 17 of these

studies there was significant variability in sample effect sizes) and none using random-

effects methods (Hunter & Schmidt, 2000). The consequences of applying fixed-effects

methods to random-effects data can be quite dramatic: significance tests of the estimate

of the population effect have Type I error rates inflated from the normal 5% to 11–28%

(Hunter & Schmidt, 2000) or 43–80% (Field, 2003b), depending on the variability of

effect sizes. In addition, when applying two random-effects methods to 68 meta-analyses

from five large meta-analytic studies published in Psychological Bulletin, Schmidt, Oh,
and Hayes (2009) found that the published fixed-effects confidence intervals around

mean effect sizes were on average 52% narrower than their actual width: these nominal

95% fixed-effects confidence intervals were on average 56% confidence intervals. The

consequences of applying random-effects methods to fixed-effects data are considerably

less dramatic: in Hedges’ method, for example, the additional between-study effect size

variance used in the random-effects method becomes zero when sample effect sizes are

homogeneous, yielding the same result as the fixed-effects method.

We mentioned earlier that part of conducting a meta-analysis is to compute
statistics that quantify heterogeneity. These tests can be used to ascertain whether

population effect sizes are likely to be fixed or variable (Hedges & Olkin, 1985). If these

homogeneity tests yield non-significant results then sample effect sizes are usually
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regarded as roughly equivalent and so population effect sizes are likely to be

homogeneous (and hence the assumption that they are fixed is reasonable). However,

these tests should be used cautiously as a means to decide on how to conceptualize that

data because they typically have low power to detect genuine variation in population

effect sizes (Hedges & Pigott, 2001). In general, we favour the view that the choice of

model should be determined a priori by the goal of the analysis rather than being a
post hoc decision based on the data collected.

To sum up, we believe that in most cases a random-effects model should be assumed

(and the consequences of applying random-effects models to fixed-effects data are much

less severe than the other way around). However, fixed-effects analysis may be

appropriate when you do not wish to generalize beyond the effect sizes in your analysis

(Oswald & McCloy, 2003); for example, a researcher who has conducted several similar

studies some of which were more successful than others might reasonably estimate the

population effect of her research by using a fixed-effects analysis. For one thing, it would
be reasonable for her to assume that her studies are tapping the same population, and

also, she would not necessarily be trying to generalize beyond her own studies.

Which method is best?
The next decision is whether to use Hunter and Schmidt (2004) and Hedges and

colleagues’ method.4 These methods will be described in due course, and the technical

differences between them have been summarized by Field (2005b) and will not be

repeated here. Field (2001; but see Hafdahl & Williams, 2009) conducted a series of
Monte Carlo simulations comparing the performance of the Hunter and Schmidt and

Hedges and Olkin (fixed and random effects) methods and found that when comparing

random-effects methods the Hunter–Schmidt method yielded the most accurate

estimates of population correlation across a variety of situations – a view echoed by

Hall and Brannick (2002) in a similar study. However, neither the Hunter–Schmidt nor

Hedges and colleagues’ method controlled the Type I error rate when 15 or fewer

studies were included in the meta-analysis, and the method described by Hedges and

Vevea (1998) controlled the Type I error rate better than the Hunter–Schmidt method
when 20 or more studies were included. Schulze (2004) has also done extensive

simulation studies and, based on these findings, recommends against using Fisher’s

z transform and suggests that the ‘optimal’ study weights used in the Hedges–Vevea

method can, at times, be suboptimal in practice. However, Schulze based these

conclusions on using only the fixed-effects version of Hedges’ method. Field (2005b)

looked at Hedges and colleagues’ random-effects method and again compared it to

Hunter and Schmidt’s bare-bones method using a Monte Carlo simulation. He concluded

that in general both random-effects methods produce accurate estimates of the
population effect size. Hedges’ method showed small (less than .052 above the

population correlation) overestimations of the population correlation in extreme

situations (i.e., when the population correlation was large, �r $ :3, and the standard

deviation of correlations was also large, sr $ 0:16; also when the population correlation

was small, �r $ :1 and the standard deviation of correlations was at its maximum value,

4 There are other methods. For example, Rosenthal and Rubin’s (1978) method is a fixed-effect method and
differs from Hedges’ method only in how the significance of the mean-weighted effect size is calculated (see
Field, 2001). Given that significance testing of the population effect estimate should not be the key concern in
meta-analysis, we have omitted this method.
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sr ¼ 0:32). The Hunter–Schmidt estimates were generally less biased than estimates

from Hedges’ random-effects method (less than .011 below the population value), but in

practical terms the bias in both methods was negligible. In terms of 95% confidence

intervals around the population estimate, Hedges’ method was in general better at

achieving these intervals (the intervals for Hunter and Schmidt’s method tended to be

too narrow, probably because they recommend using credibility intervals and not
confidence intervals – see below). However, the relative merits of the methods depended

on the parameters of the simulation and in practice the researcher should consult the

various tables in Field (2005b) to assess which method might be most accurate for the

given parameters of the meta-analysis that they are about to conduct. Also, Hunter and

Schmidt’s method involves psychometric corrections for the attenuation of observed

effect sizes that can be caused by measurement error (Hunter, Schmidt, & Le, 2006).

Not all studies will report reliability coefficients, so their methods use the average

reliability across studies to correct effect sizes. These psychometric corrections can
be incorporated into any procedure, including that of Hedges and colleagues, but

these conditions are not explored in the comparison studies mentioned above.

Methods of meta-analysis

Hunter–Schmidt method
As already mentioned, this method emphasizes isolating and correcting for sources of
error such as sampling error and reliability of measurement variables. However, Hunter

and Schmidt (2004) spend an entire book explaining these corrections, and so for this

primer we will conduct the analysis in its simplest form. The population effect is

estimated using a simple mean in which each effect size estimate, r, is weighted by the

sample size on which it is based, n:

�r ¼
Pk

i¼1 niriPk
i¼1 ni

: ð1Þ

Table 2 shows the effect sizes and their sample sizes, and in the final column we have

multiplied each effect size by the sample size on which it is based. The sum of this final

column is the numerator of equation (1), whereas the sum of sample sizes (column 2 in

Table 2) is the denominator of this equation. Therefore, the population effect can be

estimated as

�r ¼
Pk

i¼1 niriPk
i¼1 ni

¼ 312:06

563:00
¼ :554:

By Cohen’s (1988, 1992) criteria, this means that CBT for childhood and adolescent

anxiety had a large effect compared to waiting-list controls.

The next step is to estimate the generalizability of this value using a credibility

interval.5 Hunter and Schmidt (2004) recommend correcting the population effect for

5 Credibility intervals differ from confidence intervals. In essence, confidence intervals measure the precision
of an estimate, whereas credibility intervals reflect whether validity can be generalized. For example, CBT may
be an effective therapy for children with panic disorder, but not for children with social anxiety. As such,
credibility intervals address whether other variables moderate the population effect, or whether the
population of effect sizes should be broken down into subpopulations (Whitener, 1990). In contrast,
confidence intervals indicate the effect that sampling error has had on the estimate of the population effect.
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artefacts before constructing these credibility intervals. If we ignore artefact correction,

the credibility intervals are based on the variance of effect sizes in the population.

Hunter and Schmidt (2004) argue that the variance across sample effect sizes consists of

the variance of effect sizes in the population and the sampling error, and so the variance

in population effect sizes is estimated by correcting the variance in sample effect sizes

by the sampling error. The variance of sample effect sizes is the frequency-weighted
average squared error:

ŝ2
r ¼

Pk
i¼1 niðri 2 �rÞ2Pk

i¼1 ni

: ð2Þ

It is also necessary to estimate the sampling error variance using the population

correlation estimate, �r, and the average sample size, �N (see Hunter & Schmidt, 2004,

p. 88):

ŝ2
e ¼ ð1 2 �r2Þ2

�N2 1
: ð3Þ

To estimate the variance in population correlations, we subtract the sampling error

variance from the variance in sample correlations (see Hunter & Schmidt, 2004, p. 88):

ŝ2
r ¼ ŝ2

r 2 ŝ2
e : ð4Þ

The credibility intervals are based on taking the population effect estimate (equation

(1)) and adding to or subtracting from it the square root of the estimated population

variance in equation (4) multiplied by za/2, in which a is the desired probability (e.g., for

a 95% interval, za=2 ¼ 1:96):

95% credibility intervalupper ¼ �rþ 1:96
ffiffiffiffiffi
ŝ2
r

q
;

95% credibility intervallower ¼ �r2 1:96
ffiffiffiffiffi
ŝ2
r

q
:

ð5Þ

A chi-square statistic is used to measure homogeneity of effect sizes. This statistic is

based on the sum of squared errors of the mean effect size, and it is calculated from the
sample size on which the correlation is based (n), the squared errors between each

effect size and the mean, and the variance:

x2 ¼
Xk
i¼1

ðni 2 1Þðri 2 �rÞ2

ð1 2 �r2Þ2 : ð6Þ

Hedges and colleagues’ method
In this method (Hedges & Olkin, 1985; Hedges & Vevea, 1998), if r is being used, effect

sizes are first converted into a standard normal metric, using Fisher’s (1921) r-to-z

transformation, before calculating a weighted average of these transformed scores

(in which ri is the effect size from study i ). Fisher’s transformation is given by

zri ¼
1

2
loge

1 þ ri

1 2 ri

� �
; ð7Þ
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and the reverse transformation by

ri ¼
e2zri 2 1

e2zri þ 1
ð8Þ

To remove the slight positive bias found from Fisher-transformed rs, the effect

sizes can be transformed with r 2 ½ðrð1 2 r 2ÞÞ=2ðn2 3Þ� before the Fisher trans-

formation in equation (7) is applied (see Overton, 1998). This is done in the SPSS

syntax files that we have produced to accompany this paper. Note also that less
biased r-to-z transformations have been developed that may explain some of the

differences between the two methods of meta-analysis discussed in this paper

(Hafdahl, 2009, 2010).

In the fixed-effects model, the transformed effect sizes are used to calculate an

average in which each effect size is weighted by the inverse within-study variance

of the study from which it came.

�zr ¼
Pk

i¼1 wizriPk
i¼1 wi

; ð9Þ

in which k is the number of studies in the meta-analysis. When r is the effect size
measure, the weight (wi) is the sample size, ni, less 3 ðwi ¼ ni 2 3Þ, but when d is

the effect size measure this weight is wi ¼ 4Nið1 þ d2
i Þ=8. The resulting weighted

average is in the z-metric and should be converted back to r using equation (8).

We use this average, and the weight for each study, to calculate the homogeneity of

effect sizes. The resulting statistic Q has a chi-square distribution with k2 1 degrees

of freedom:

Q ¼
Xk
i¼1

wi zri 2 �zr
� �2

: ð10Þ

If you wanted to apply a fixed-effects model you could stop here. However, as we
have suggested, there is usually good reason to assume that a random-effects model is

most appropriate. To calculate the random-effects average effect size, the weights use a

variance component that incorporates both between- and within-study variance.

The between-study variance is denoted by t2 and is added to the within-study variance

to create new weights:

w�
i ¼

1

wi

þ t̂2

� �21

: ð11Þ

The value of wi depends upon whether r or d has been used (see above): when r

has been used, wi ¼ ni 2 3. The random-effects weighted average in the z metric

uses the same equation as the fixed-effects model, except that the weights have changed
to incorporate between-study variance:

�z�r ¼
Pk

i¼1 w
�
i zriPk

i¼1 w
�
i

: ð12Þ

The between-studies variance can be estimated in several ways (see Friedman, 1937;

Hedges & Vevea, 1998; Overton, 1998; Takkouche, Cadarso-Suárez, & Spiegelman, 1999).
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Hedges and Vevea (1998, equation (10)) use an equation based on Q (the weighted

sum of squared errors in equation (10)), k, and a constant, c,

t̂2 ¼ Q2 ðk2 1Þ
c

; ð13Þ

where c is defined as

c ¼
Xk
i¼1

wi 2

Pk
i¼1 ðwiÞ2Pk
i¼1 wi

: ð14Þ

If the estimate of between-studies variance, t̂2, yields a negative value then it is set

to zero (because the variance between studies cannot be negative). The estimate t̂2

is substituted in equation (11) to calculate the weight for a particular study, and this

in turn is used in equation (12) to calculate the average correlation. This average

correlation is then converted back to the r metric using equation (8) before being

reported.

The final step is to estimate the precision of this population effect estimate using
confidence intervals. The confidence interval for a mean value is calculated using

the standard error of that mean. Therefore, to calculate the confidence interval for the

population effect estimate, we need to know the standard error of the mean effect size.

This is the square root of the reciprocal of the sum of the random-effects weights

(see Hedges & Vevea, 1998, p. 493):

SE �z�r
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Pk
i¼1 w

�
i

s
: ð15Þ

The confidence interval around the population effect estimate is calculated in the usual

way by multiplying the standard error by the two-tailed critical value of the normal

distribution (which is 1.96 for a 95% confidence interval). The upper and lower bounds

are calculated by taking the average effect size and adding or subtracting its standard

error multiplied by 1.96:

95%CIupper ¼ �z�r þ 1:96SE �Z
�
r

� �
;

95%CIlower ¼ �z�r 2 1:96SE �Z
�
r

� �
:

ð16Þ

These values are again transformed back to the r metric using equation (8) before being

reported.

Doing meta-analysis on a computer
In reality, you will not do the meta-analysis by hand (although we believe that there is no

harm in understanding what is going on behind the scenes). There are some stand-alone
packages for conducting meta-analyses such as Comprehensive Meta-Analysis, which

implements many different meta-analysis methods, converts effect sizes, and creates

plots of study effects. Hunter and Schmidt (2004) provide specialist custom-written

software for implementing their full method on the CD-ROM of their book. There is also

a program called Mix (Bax, Yu, Ikeda, Tsuruta, & Moons, 2006), and the Cochrane
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Collaboration (2008) provides software called Review Manager for conducting meta-

analysis. Both of these packages have excellent graphical facilities.

For those who want to conduct meta-analysis without the expense of buying

specialist software, meta-analysis can also be done using R (R Development Core

Team, 2008), a freely available package for conducting a staggering array of

statistical procedures. R is based on the S language and so has much in common
with the commercially available package S-PLUS. Scripts for running a variety of

meta-analysis procedures on d are available in the ‘meta’ package that can be

installed into R (Schwarzer, 2005). Likewise, publication bias analysis can be run

in R. The implementation of some of these programs will be described in due

course. In addition, Excel users can use a plug-in called MetaEasy (Kontopantelis &

Reeves, 2009).

SPSS does not, at present, offer built-in tools for doing meta-analysis, but the methods

described in this paper can be conducted using custom-written syntax. To accompany
this article, we have produced syntax files to conduct many of the

meta-analytic techniques discussed in this paper (although the Hunter–Schmidt version

is in only its simplest form). Other SPSS syntax files for r and also d are also available

from Lavesque (2001) and Wilson (2004). All of the data and syntax files accompanying

this paper can be downloaded from our webpage (Field & Gillett, 2009). The SPSS

syntax files are:

(1) Basic meta-analysis. The files Meta_Basic_r.sps, Meta_Basic_d.sps, and
Meta_Basic_D_h.sps can be used to perform a basic meta-analysis on effect

sizes expressed as r, d, and the difference between proportions (D or h),

respectively, in SPSS. The output provides an estimate of the average effect size

of all studies, or any subset of studies, a test of homogeneity of effect size that

contributes to the assessment of the goodness of fit of the statistical model,

elementary indicators of, and tests for, the presence of publication bias, and

parameters for both fixed- and random-effects models.

(2) Moderator variable analysis. The files Meta_Mod_r.sps, Meta_Mod_d.sps, and
Meta_Mod_D_h.sps can be used for analysing the influence of moderator

variables on effect sizes expressed as r, d, and the difference between

proportions (D or h), respectively, in SPSS. Each of these files is run using

a shorter syntax file to launch these files (i.e., Meta_Mod_r.sps is launched

by using the syntax file Launch_Meta_Mod_r.sps). The programs use weighted

multiple regression to provide an evaluation of the impact of continuous

moderator variables on effect sizes, an evaluation of the impact of categorical

moderator variables on effect sizes, tests of homogeneity of effect sizes that
contribute to the assessment of the goodness of fit of a statistical model

incorporating a given set of moderator variables, and estimates for both fixed-

and random-effects models.

(3) Publication bias analysis. The files Pub_Bias_r.R, Pub_Bias_d.R, and

Pub_Bias_D_h.R can be used to produce funnel plots and a more sophisticated

publication bias analysis on effect sizes expressed as r, d, and the difference

between proportions (D or h), respectively, using the software R. Each file

computes an ordinary unadjusted estimate and four adjusted estimates of effect
size that indicate the potential impact of severe and moderate one- and two-

tailed bias, for both fixed- and random-effects models (see below). Note that

these files include Vevea and Woods’s (2005) scripts for R.
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In this section, we will do the basic analysis that we described in the previous

section using the effect sizes from Cartwright-Hatton et al. (2004) expressed as r. Before

we begin, you need to create a folder in the ‘Documents’ folder on your hard drive

called ‘Meta-Analysis’ (for the first author, the complete file path would, therefore, be

‘C:\Users\Dr. Andy Field\Documents\Meta-Analysis’.6 This folder is needed for some of

our files to work.
In the SPSS data editor, create two new variables, the first for the effect sizes,

r, and the second for the total sample size on which each effect size is based, n; it is

also good practice to create a variable in which you identify the study from which each

effect size came. You can download this data file (Cartwright-Hatton_et_al_2004.sav)

from the accompanying website. Once the data are entered, simply open the syntax

file and in the syntax window click on the ‘Run’ menu and then select ‘All’. The

resulting output is in Figure 1. Note that the analysis calculated both fixed- and random-

effects statistics for both methods. This is for convenience but, given that we have
made an a priori decision about which method to use, and whether to apply a fixed-

and random-effects analysis, we would interpret only the corresponding part of

the output. In this case, we opted for a random-effects analysis. This output is fairly

self-explanatory; for example, we can see that, for Hedges and Vevea’s method, the Q

statistic (equation (10) above) is highly significant, x2ð9Þ ¼ 41:27, p , :001. Likewise,

the population effect size once returned to the r metric and its 95% confidence interval

are: .61 (95% CI [.48, .72]). We can also see that this population effect size is

significant, z ¼ 7:57, p , :001.
At the bottom of the output are the corresponding statistics from the Hunter–

Schmidt method including the population estimate, .55, the sample correlation

variance from equation (2), .036, the sampling error variance from equation (3),

.009, the variance in population correlations from equation (4), .027, the upper and

lower bounds of the credibility interval from equation (5), .87 and .23, and the

chi-square test of homogeneity from equation (6) and its associated significance,

x2ð9Þ ¼ 41:72, p , :001. The output also contains important information to be used

to estimate the effects of publication bias, but we will come back to this issue in
due course.

Based on both homogeneity tests, we could say that there was considerable variation

in effect sizes overall. Also, based on the estimate of population effect size and its

confidence interval, we could conclude that there was a strong effect of CBT for

childhood and adolescent anxiety disorders compared to waiting-list controls. To get

some ideas about how to write up a meta-analysis like this, see Brewin et al. (2007).

Step 5: Do some more advanced analysis

Moderator analysis

Theory behind moderator analysis
The model for moderator effects is a mixed model (which we mentioned earlier):

it assumes a general linear model in which each z-transformed effect size can be

6 Our files are written for Windows (Vista onwards). However if you use an earlier version simply edit
the line ‘cd “%HOMEDRIVE%%HOMEPATH%\Documents\Meta-Analysis”’ to include ‘My Documents’ (i.e.,
‘cd “%HOMEDRIVE%%HOMEPATH%\My Documents\Meta-Analysis”’.) Mac users should replace this line of
code with ‘cd “Documents\Meta-Analysis”’.
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predicted from the transformed moderator effect (represented by b1):

zr ¼ b0 þ Cb1 þ ei: ð17Þ

The within-study error variance is represented by ei which will on average be zero with a

variance of 1=ðni 2 3Þ. To calculate the moderator effect, b1, a generalized least squares
(GLS) estimate is calculated. For the purposes of this tutorial, it is not necessary to know

the mathematics behind the process (if you are interested then read Field, 2003b;

Overton, 1998). The main thing to understand is that the moderator effect is coded

using contrast weights that relate to the moderator effect (like contrast weights in the

Figure 1. SPSS output for the syntax file Meta_Basic_r.sps for Cartwright-Hatton et al.’s (2004)

systematic review.
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analysis of variance). In the case of a moderator effect with two levels (e.g., whether the

CBT used was group therapy or individual therapy), we could give one level codes of

21, and the other level codes of 1 (you should use 0.5 and 20.5 if you want the resulting

beta to represent the actual difference between the effect of group and individual CBT).

As such, when we run a moderator analysis using SPSS we have to define contrast codes

that indicate which groups are to be compared.

A cautionary tale: The risk of confounded inference caused by unequal cell sizes
For theoretical and practical reasons, the primary studies in a meta-analysis tend to

focus on some combinations of levels of variables more than on others. For

example, white people aged around 20 are more commonly used as participants in

primary studies than black people aged around 50. The occurrence of unequal cell

sizes can introduce spurious correlations between otherwise independent variables.

Consider a meta-analysis of 12 primary studies that investigated the difference

between active and passive movement in spatial learning using the effect size
measure d. Two moderator variables were identified as potentially useful for

explaining differences among studies: (a) whether a reward was offered for good

performance, and (b) whether the spatial environment was real or virtual. However,

only 8 out of the 12 studies provided information about the levels of the moderator

variables employed in their particular cases. Table 3 presents the original data set

with full information about all 12 studies that was not available to the meta-analyst.

The design of the original data set is balanced, because cell sizes are equal. Table 3

also displays a reduced data set of eight studies, which has an unbalanced design
because cell sizes are unequal.

In the original balanced data set, the mean effect of a real environment is greater

than that of a virtual one (.6 vs. .2). Second, there is no difference between the mean

Table 3. Artefactual effect of reward moderator owing to unequal cell sizes

Original balanced data set Reduced unbalanced data set

Reward Environment d Reward Environment d

1 1 .58

1 1 .60 1 1 .60

1 1 .62

1 21 .18 1 21 .18

1 21 .20 1 21 .20

1 21 .22 1 21 .22

21 1 .58 21 1 .58

21 1 .60 21 1 .60

21 1 .62 21 1 .62

21 21 .18

21 21 .20 21 21 .20

21 21 .22

Mean reward .40 Mean reward .30

Mean no reward .40 Mean no reward .50

Note. Reward levels are (1 ¼ yes, 21 ¼ no), and environment levels are (1 ¼ real, 21 ¼ virtual).
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effect when reward is present and when it is absent (.4 vs. .4). Third, the correlation

between the reward and environment factors is r ¼ 0, as would be expected in a

balanced design.

However, the meta-analyst must work with the reduced unbalanced data set because

key information about levels of moderator variables is missing. In the reduced data set,

the correlation between the reward and environment factors equals r ¼ 2:5. Crucially,
the non-zero correlation allows variance from the environment variable to be recruited

by the reward variable. In other words, the non-zero correlation induces a spurious

difference between the reward level mean effects (.3 vs. .5). The artefactual difference is

generated because high-scoring real environments are underrepresented when reward

is present (.60 vs. .18, .20, .22), while low-scoring virtual environments are

underrepresented when reward is absent (.20 vs. .58, .60, .62).

Although the pool of potential moderator variables is often large for any given meta-

analysis, not all primary studies provide information about the levels of such variables.
Hence, in practice, only a few moderator variables may be suitable for analysis. In our

example, suppose that too few studies provided information about the environment

(real or virtual) for it to be suitable for use as a moderator variable. In that event, the

spurious difference between the reward levels would remain, and would be liable to be

misinterpreted as a genuine phenomenon. In our example, we have the benefit of

knowing the full data set and therefore being able to see that the missing data were not

random. However, a meta-analyst just has the reduced data set and has no way of

knowing whether missing data are random or not. As such, missing data does not
invalidate a meta-analysis per se, and does not mean that moderator analysis should not

be done when data are missing in studies for certain levels of the moderator variable.

However, it does mean that when studies at certain levels of the moderator variable are

under- or unrepresented your interpretation should be restrained and the possibility of

bias made evident to the reader.

Moderator analysis using SPSS
The macros we have supplied allow both continuous and categorical predictors

(moderators) to be entered into the regression model that a researcher wishes to test.

To spare the researcher the complexities of effect coding, the levels of a categorical

predictor are coded using integers 1, 2, 3, . . . to denote membership of category levels

1, 2, 3, . . . of the predictor. The macros yield multiple regression output for both

fixed- and random-effects meta-analytic models.

The Cartwright-Hatton et al. data set is too small to do a moderator analysis, so we
will turn to our second example of Tenenbaum and Leaper (2002). Tenenbaum and

Leaper were interested in whether the effect of parents’ gender schemas on their

children’s gender-related cognitions was moderated by the gender of the experimenter.

A SPSS file of their data can be downloaded from the website that accompanies this

article (in this case Tenenbaum_&_Leaper_2002.sav). Load this data file into SPSS and

you will see that the moderator variable (gender of the experimenter) is represented by

a column labelled ‘catmod’ in which male researchers are coded with the number 2 and

females with 1. In this example, we have just one column representing our sole
categorical moderator variable, but we could add in other columns for additional

moderator variables.

The main SPSS syntax file (in this case Meta_Mod_r.sps) is run using a much simpler

launch file. From SPSS, open the syntax file Launch_Meta_Mod_r.sps. This file should
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appear in a syntax window and comprises three lines:

cd “%HOMEDRIVE%%HOMEPATH%\Documents\Meta-Analysis”.
insert file ¼ “Meta Mod r:sps”.
Moderator_r r¼r n¼n conmods¼ð Þ catmods¼ðcatmodÞ.

The first line simply tells SPSS where to find your meta-analysis files.7 The second line

references the main syntax file for the moderator analysis. If this file is not in the

‘… \Documents\Meta-Analysis’ directory then SPSS will return a ‘file not found’ error

message. The final line is the most important because it contains parameters that need to

be edited. The four parameters need to be set to the names of the corresponding

variables in the active data file:

. r ¼ the name of the variable containing the effect sizes. In the Tenenbaum data file,
this variable is named ‘r’, so we would edit this to read r¼r, if you had labelled

this column ‘correlation’ then you would edit the text to say r¼correlation, etc.

. n¼the name of the sample size variable. In the Tenenbaum data file, this variable is

named ‘n’, so we would edit this to read n¼n, if you had labelled this column

‘sample_size’ in SPSS then you would edit the text to say n¼sample_size, etc.

. conmods¼names of variables in the data file that represent continuous moderator

variables, e.g., conmods¼ðarousal accuracyÞ. We have no continuous moderators

in this example so we leave the inside of the brackets blank, e.g., conmods¼ð Þ.
. catmods¼names of categorical moderator variables, e.g., catmods¼(gender

religion). In the Tenenbaum data file, we have one categorical predictor which

we have labelled ‘catmod’ in the data file, hence, we edit the text to say

catmods¼ðcatmodÞ.

On the top menu bar of this syntax file, click ‘Run’ and then ‘All’. (The format of the

launch file for d as an effect size is much the same except that there are two variables

for sample size representing the two groups, n1 and n2, which need to be set to the
corresponding variable names in SPSS, e.g., n1¼n_group1 n2¼n_group2.)

Figure 2 shows the resulting output. Tenenbaum and Leaper used a fixed-effects

model, and the first part of the output replicates what they report (with the 95%

confidence interval reported in parentheses throughout): there was an overall small to

medium effect, r ¼ :16 (.14, .18), and the gender of the researcher significantly

moderated this effect, x2ð1Þ ¼ 23:72, p , :001. The random-effects model tells a

different story: there was still an overall small to medium effect, r ¼ :18 (.13, .22);

however, the gender of the researcher did not significantly moderate this effect,
x2ð1Þ ¼ 1:18, p ¼ :28. Given the heterogeneity in the data, this random-effects analysis

is probably the one that should have been done.

Estimating publication bias
Earlier on we mentioned that publication bias can exert a substantial influence on

meta-analytic reviews. Various techniques have been developed to estimate the effect

7 Remember in versions of Windows before Vista, this line should be edited to include ‘My Documents’
(i.e., ‘cd “%HOMEDRIVE%%HOMEPATH%\My Documents\Meta-Analysis”’) and that Mac users should replace
this line with ‘cd “Documents\Meta-Analysis”’.
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of this bias, and to correct for it. We will focus on only a selection of these methods.

The earliest and most commonly reported estimate of publication bias is Rosenthal’s

(1979) fail-safe N. This was an elegant and easily understood method for estimating the

number of unpublished studies that would need to exist to turn a significant population

effect size estimate into a non-significant one. To compute Rosenthal’s fail-safe N, each

Figure 2. SPSS output for the moderator analysis on Tenenbaum and Leaper’s (2002) data using

the r_metareg macro.

How to do a meta-analysis 685



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

effect size is first converted into a z score and the sum of these scores is used in the

following equation:

N fs ¼
Pk

i¼1 zi
� �2

2:706
2 k: ð18Þ

Here, k is the number of studies in the meta-analysis and 2.706 is intrinsic to the

equation. For Cartwright-Hatton et al.’s data, we get 915 from our SPSS basic analysis

syntax (see Figure 1). In other words, there would need to be 915 unpublished studies

not included in the meta-analysis to make the population effect size non-significant.

However, the fail-safe N has been criticized because of its dependence on

significance testing. As testing the significance of the estimate of the population effect

size is not recommended, other methods have been devised. For example, when using d

as an effect size measure, Orwin (1983) suggests a variation on the fail-safe N that
estimates the number of unpublished studies required to bring the average effect size

down to a predetermined value. This predetermined value could be 0 (no effect at all),

but could also be some other value that was meaningful within the specific research

context: for example, how many unpublished studies there would need to be to reduce

the population effect size estimate from .67 to a small, by Cohen’s (1988) criterion,

effect of .2. However, any fail-safe N method addresses the wrong question: it is usually

more interesting to know the bias in the data one has and to correct for it than to know

how many studies would be needed to reverse a conclusion (see Vevea & Woods, 2005).
A simple and effective graphical technique for exploring potential publication bias is

the funnel plot (Light & Pillemer, 1984). A funnel plot displays effect sizes plotted

against the sample size, standard error, conditional variance, or some other measure of

the precision of the estimate. An unbiased sample would ideally show a cloud of data

points that is symmetric around the population effect size and has the shape of a funnel.
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Figure 3. Example of a funnel plot showing little publication bias. The vertical line is the

population effect size estimate and the diagonal lines the 95% confidence interval.
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This funnel shape reflects the greater variability in effect sizes from studies with small

sample sizes/less precision. A sample with publication bias will lack symmetry because

studies based on small samples that showed small effects will be less likely to be

published than studies based on the same-size samples but that showed larger effects

(Macaskill, Walter, & Irwig, 2001). Figure 3 presents an example of a funnel plot showing

approximate symmetry around the population effect size estimate. When you run the
SPSS syntax for the basic meta-analysis, funnel plots are produced; however, the y-axis is

scaled the opposite way to normal conventions. For this reason, we advise that you use

these plots only as a quick way to look for publication bias, and use our publication

bias scripts in R to produce funnel plots for presentation purposes (see below). Funnel

plots should really be used only as a first step before further analysis because there

are factors that can cause asymmetry other than publication bias. Some examples

are true heterogeneity of effect sizes (in intervention studies this can happen because

the intervention is more intensely delivered in smaller more personalized studies),
English language bias (studies with smaller effects are often found in non-English

language journals and get overlooked in the literature search) and data irregularities

including fraud and poor study design (Egger, Smith, Schneider, & Minder, 1997).

Attempts have been made to quantify the relationship between effect size and its

associated variance. An easy method to understand and implement is Begg and

Mazumdar’s (1994) rank correlation test for publication bias. This test is Kendall’s tau

applied between a standardized form of the effect size and its associated variance. The

resulting statistic (and its significance) quantifies the association between the effect size
and the sample size: publication bias is shown by a strong/significant correlation.

This test has good power for large meta-analyses but can lack power for smaller

meta-analyses, for which a non-significant correlation should not be seen as evidence of

no publication bias (Begg & Mazumdar, 1994). This statistic is produced by the basic

meta-analysis syntax file that we ran earlier. In your SPSS output, you should find that

Begg and Mazumdar’s rank correlation for the Cartwright-Hatton et al. data is highly

significant, tðN ¼ 10Þ ¼ 2:51, p , :05, indicating significant publication bias. Similar

techniques are available based on testing the slope of a regression line fitted to the
funnel plot (Macaskill et al., 2001).

Funnel plots and the associated measures of the relationship between effect sizes

and their associated variances offer no means to correct for any bias detected. Two main

methods have been devised for making such corrections. Trim and fill (Duval &

Tweedie, 2000) is a method in which a biased funnel plot is truncated and the number

(k) of missing studies from the truncated part is estimated. Next, k artificial studies are

added to the negative side of the funnel plot (and therefore have small effect sizes) so

that in effect the study now contains k studies with effect sizes as small in magnitude as
the k largest effect sizes. A new estimate of the population effect size is then calculated

including these artificially small effect sizes. This is a useful technique but, as Vevea and

Woods (2005) point out, it relies on the strict assumption that all of the ‘missing’ studies

are those with the smallest effect sizes; as such it can lead to overcorrection. More

sophisticated correction methods have been devised based on weight function models

of publication bias. These methods use weights to model the process through which

the likelihood of a study being published varies (usually based on a criterion such as

the significance of a study). The methods are quite technical and have typically been
effective only when meta-analyses contain relatively large numbers of studies (k . 100).

Vevea and Woods’ (2005) recent method, however, can be applied to smaller meta-

analyses and has relatively more flexibility for the meta-analyst to specify the likely
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conditions of publication bias in their particular research scenario. Vevea and Woods

specify four typical weight functions which they label ‘moderate one-tailed selection’,

‘severe one-tailed selection’ ‘moderate two-tailed selection’, and ‘severe two-tailed

selection’; however, they recommend adapting the weight functions based on what the

funnel plot reveals (see Vevea & Woods, 2005).

Estimating and correcting for publication bias using a computer
We have already calculated the fail-safe N, Begg and Mazumdar’s rank correlation

and some crude funnel plots in our basic analysis. However, for the more sophisticated

meta-analyst, we recommend producing funnel plots with confidence intervals

superimposed, and correcting population effect size estimates using Vevea and Woods’s

methods (above). Vevea and Woods (2005) have produced code for implementing

their sensitivity analysis in S-PLUS, and this code will also run in R.8 We have produced

script files for R that feed data saved from the initial SPSS meta-analysis into Vevea
and Woods’s S-PLUS code, and use the package ‘meta’ to produce funnel plots too

(you can also use Mix or Review Manager to produce funnel plots).

To do this part of the analysis, you will need to download R, if you do not

already have it, and install it.

You can now run a publication bias analysis on the Cartwright-Hatton et al. data. To

do this, go to the ‘File’ menu in R and select ‘Open document…’. Find your meta-analysis

directory (remember that you created this folder earlier), and select the file Pub_Bias_r.R

(remember that if d is your effect size then you must select the file Pub_Bias_d.R).
This document will open in a new window within R. In this new window, simply click

with the right mouse button and select ‘Select all’ and then click with the right mouse

button again and select ‘Run line or selection’ (this process can be done more quickly by

using the keyboard shortcut of Ctrl þ A followed by Ctrl þ R or cmd þ A followed by

cmd þ enter on a Mac).

The resulting funnel plot (Figure 4) shows the effect size plotted against the

standard error for each study, and a reference line representing the 95% confidence

interval. If the data were unbiased, this plot would be funnel shaped around the
dotted line and symmetrical. The resulting plot is clearly not symmetrical (and shows

one effect size that appears to be very discrepant from the rest) or funnel shaped and

shows clear evidence of bias.

Figure 5 shows the output for Vevea and Woods’ (2005) sensitivity analysis for

both fixed- and random-effects models. We will interpret only the random-effects

model. The unadjusted population effect size estimate is first given (with its variance

component) and also the value when this estimate is converted back into r. These

values correspond approximately to the values that we have already calculated from
our SPSS analysis. However, the adjusted parameter estimates provide the values of

the population effect size estimate corrected for four different selection bias models

outlined by Vevea and Woods (2005). The four different selection bias models

represent a range of situations differing in the extent and form of the selection bias.

As such, they are a reasonable starting-point in the absence of any better information

8 Due to slight technical differences between S-PLUS and R, the code provided in Vevea and Woods (2005)
will not run in R; however, the amended code for R cited here will run on both R and S-PLUS (thanks to
Jack Vevea for these amendments). We have made some minor changes to the code to make it slightly more
straightforward to use, and so that the results when using r are back-transformed from z to r.

688 Andy P. Field and Raphael Gillett



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

Figure 5. Output from R for Vevea and Woods’ sensitivity analysis.
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Figure 4. Funnel plot from R of effect sizes from Cartwright-Hatton et al. (2004).
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about the selection bias model most appropriate for your data (based on, for

example, the funnel plot). However, Vevea and Woods (2005) recommend applying a

greater variety of selection models, or applying selection models specifically tailored

to the data within the particular meta-analysis.9 The important thing in terms of

interpretation is how the population effect size estimate changes under the different

selection bias models. For the Cartwright-Hatton et al. data, the unadjusted
population effect size (as r) was .61 as calculated above using the SPSS syntax.

Under both moderate one- and two-tailed selection bias, the population effect size

estimate is unchanged to two decimal places (see the column labelled r in Figure 5,

for the random-effects model). Even applying a severe selection bias model, the

population effect size drops only to .60. As such, we can be confident that the strong

effect of CBT for childhood and adolescent anxiety disorders is not compromised

even when applying corrections for severe selection bias.

Step 6: Write it up

Rosenthal (1995) wrote an excellent article on best practice in reporting meta-analytic

reviews. Based largely on his advice, we recommend the following. First, you should
always be clear about your search and inclusion criteria, which effect size measure

you are using (and any issues you had in computing these), which meta-analytic

technique you are applying to the data and why (especially whether you are applying a

fixed- or random-effects method). Rosenthal recommends stem-and-leaf plots of

the computed effect sizes because this is a concise way to summarize the effect sizes that

have been included in your analyses. If you have carried out a moderator analysis, then

you might also provide stem-and-leaf plots for subgroups of the analysis (e.g., see Brewin

et al., 2007). Other plots that should be considered are forest plots and a bean plot. You
should always report statistics relating to the variability of effect sizes (these should

include the actual estimate of variability as well as statistical tests of variability), and

obviously the estimate of the population effect size and its associated confidence interval

(or credibility interval). You should, as a matter of habit, also report information on

publication bias, and preferably a variety of analyses (for example, the fail-safe N, a funnel

plot, Begg and Mazumdar’s rank correlation, and Vevea and Woods’s sensitivity analysis).

Summary

This article has tried to offer a comprehensive overview of how to conduct a meta-
analytic review including new files for an easy implementation of the basic analysis in

9 These analyses can be achieved by editing the R file that runs the analysis. Opening this file in a text editor reveals
the code that controls the weight functions:

# Enter fixed weight function
w1 ,- matrix(c(1.0,.99,.95,.90,.80,.75,.65,.60,.55,.50,.50,.50,.50,.50), ncol ¼ 1)
w2 ,- matrix(c(1.0,.99,.90,.75,.60,.50,.40,.35,.30,.25,.10,.10,.10,.10), ncol ¼ 1)
w3 ,- matrix(c(1.0,.99,.95,.90,.80,.75,.60,.60,.75,.80,.90,.95,.99,1.0), ncol ¼ 1)
w4 ,- matrix(c(1.0,.99,.90,.75,.60,.50,.25,.25,.50,.60,.75,.90,.99,1.0), ncol ¼ 1)

These four vectors contain the weights from Table 1 of Vevea and Woods (2005), and different selection bias
models can be tested by changing the values of the weights in these vectors (see Vevea & Woods, 2005, for more
details).

690 Andy P. Field and Raphael Gillett



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

SPSS and R. To sum up, the analysis begins by collecting articles addressing the research

question that you are interested in. This will include e-mailing people in the field for

unpublished studies, electronic searches, searches of conference abstracts, and so on.

Once the articles are selected, inclusion criteria need to be devised that reflect

the concerns pertinent to the particular research question (which might include the

type of control group used, clarity of diagnosis, the measures used, or other factors that
ensure a minimum level of research quality). The included articles are then scrutinized

for statistical details from which effect sizes can be calculated; the same effect size

metric should be used for all studies (see the aforementioned electronic resources for

computing these effect sizes). Next, decide on the type of analysis appropriate for your

particular situation (fixed vs. random effects, Hedges’ method or Hunter and Schmidt’s,

etc.) and then to apply this method (possibly using the SPSS resources produced to

supplement this article). An important part of the analysis is to describe the effect of

publication bias and to re-estimate the population effect under various publication bias
models using the Vevea and Woods (2005) model. Finally, the results need to be written

up such that the reader has clear information about the distribution of effect sizes (e.g., a

stem-and-leaf plot), the effect size variability, the estimate of the population effect and its

95% confidence interval, the extent of publication bias (e.g., funnel plots, the rank

correlation of the fail-safe N), and the influence of publication bias (Vevea and Woods’s

adjusted estimates).
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